Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Attend in groups: a weakly-supervised deep learning framework for learning from web data (1611.09960v1)

Published 30 Nov 2016 in cs.CV

Abstract: Large-scale datasets have driven the rapid development of deep neural networks for visual recognition. However, annotating a massive dataset is expensive and time-consuming. Web images and their labels are, in comparison, much easier to obtain, but direct training on such automatically harvested images can lead to unsatisfactory performance, because the noisy labels of Web images adversely affect the learned recognition models. To address this drawback we propose an end-to-end weakly-supervised deep learning framework which is robust to the label noise in Web images. The proposed framework relies on two unified strategies -- random grouping and attention -- to effectively reduce the negative impact of noisy web image annotations. Specifically, random grouping stacks multiple images into a single training instance and thus increases the labeling accuracy at the instance level. Attention, on the other hand, suppresses the noisy signals from both incorrectly labeled images and less discriminative image regions. By conducting intensive experiments on two challenging datasets, including a newly collected fine-grained dataset with Web images of different car models, the superior performance of the proposed methods over competitive baselines is clearly demonstrated.

Citations (87)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.