Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Upper Bound on Knots in Neural Networks (1611.09448v2)

Published 29 Nov 2016 in stat.ML and cs.LG

Abstract: Neural networks with rectified linear unit activations are essentially multivariate linear splines. As such, one of many ways to measure the "complexity" or "expressivity" of a neural network is to count the number of knots in the spline model. We study the number of knots in fully-connected feedforward neural networks with rectified linear unit activation functions. We intentionally keep the neural networks very simple, so as to make theoretical analyses more approachable. An induction on the number of layers $l$ reveals a tight upper bound on the number of knots in $\mathbb{R} \to \mathbb{R}p$ deep neural networks. With $n_i \gg 1$ neurons in layer $i = 1, \dots, l$, the upper bound is approximately $n_1 \dots n_l$. We then show that the exact upper bound is tight, and we demonstrate the upper bound with an example. The purpose of these analyses is to pave a path for understanding the behavior of general $\mathbb{R}q \to \mathbb{R}p$ neural networks.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)