Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Policy Gradient by Exploring Under-appreciated Rewards (1611.09321v3)

Published 28 Nov 2016 in cs.LG and cs.AI

Abstract: This paper presents a novel form of policy gradient for model-free reinforcement learning (RL) with improved exploration properties. Current policy-based methods use entropy regularization to encourage undirected exploration of the reward landscape, which is ineffective in high dimensional spaces with sparse rewards. We propose a more directed exploration strategy that promotes exploration of under-appreciated reward regions. An action sequence is considered under-appreciated if its log-probability under the current policy under-estimates its resulting reward. The proposed exploration strategy is easy to implement, requiring small modifications to an implementation of the REINFORCE algorithm. We evaluate the approach on a set of algorithmic tasks that have long challenged RL methods. Our approach reduces hyper-parameter sensitivity and demonstrates significant improvements over baseline methods. Our algorithm successfully solves a benchmark multi-digit addition task and generalizes to long sequences. This is, to our knowledge, the first time that a pure RL method has solved addition using only reward feedback.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.