Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Locality-Sensitive Hashing without False Negatives for l_p (1611.09317v1)

Published 28 Nov 2016 in cs.DS

Abstract: In this paper, we show a construction of locality-sensitive hash functions without false negatives, i.e., which ensure collision for every pair of points within a given radius $R$ in $d$ dimensional space equipped with $l_p$ norm when $p \in [1,\infty]$. Furthermore, we show how to use these hash functions to solve the $c$-approximate nearest neighbor search problem without false negatives. Namely, if there is a point at distance $R$, we will certainly report it and points at distance greater than $cR$ will not be reported for $c=\Omega(\sqrt{d},d{1-\frac{1}{p}})$. The constructed algorithms work: - with preprocessing time $\mathcal{O}(n \log(n))$ and sublinear expected query time, - with preprocessing time $\mathcal{O}(\mathrm{poly}(n))$ and expected query time $\mathcal{O}(\log(n))$. Our paper reports progress on answering the open problem presented by Pagh [8] who considered the nearest neighbor search without false negatives for the Hamming distance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.