Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A duality-based approach for distributed min-max optimization (1611.09168v1)

Published 28 Nov 2016 in math.OC and cs.DC

Abstract: In this paper we consider a distributed optimization scenario in which a set of processors aims at cooperatively solving a class of min-max optimization problems. This set-up is motivated by peak-demand minimization problems in smart grids. Here, the goal is to minimize the peak value over a finite horizon with: (i) the demand at each time instant being the sum of contributions from different devices, and (ii) the device states at different time instants being coupled through local constraints (e.g., the dynamics). The min-max structure and the double coupling (through the devices and over the time horizon) makes this problem challenging in a distributed set-up (e.g., existing distributed dual decomposition approaches cannot be applied). We propose a distributed algorithm based on the combination of duality methods and properties from min-max optimization. Specifically, we repeatedly apply duality theory and properly introduce ad-hoc slack variables in order to derive a series of equivalent problems. On the resulting problem we apply a dual subgradient method, which turns out to be a distributed algorithm consisting of a minimization on the original primal variables and a suitable dual update. We prove the convergence of the proposed algorithm in objective value. Moreover, we show that every limit point of the primal sequence is an optimal (feasible) solution. Finally, we provide numerical computations for a peak-demand optimization problem in a network of thermostatically controlled loads.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.