Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Low-Space Differentially Private Low-rank Factorization in the Spectral Norm (1611.08954v1)

Published 28 Nov 2016 in cs.DS and cs.CR

Abstract: Low-rank factorization is used in many areas of computer science where one performs spectral analysis on large sensitive data stored in the form of matrices. In this paper, we study differentially private low-rank factorization of a matrix with respect to the spectral norm in the turnstile update model. In this problem, given an input matrix $\mathbf{A} \in \mathbb{R}{m \times n}$ updated in the turnstile manner and a target rank $k$, the goal is to find two rank-$k$ orthogonal matrices $\mathbf{U}_k \in \mathbb{R}{m \times k}$ and $\mathbf{V}_k \in \mathbb{R}{n \times k}$, and one positive semidefinite diagonal matrix $\textbf{\Sigma}_k \in \mathbb{R}{k \times k}$ such that $\mathbf{A} \approx \mathbf{U}_k \textbf{\Sigma}_k \mathbf{V}_k\mathsf{T}$ with respect to the spectral norm. Our main contributions are two computationally efficient and sub-linear space algorithms for computing a differentially private low-rank factorization. We consider two levels of privacy. In the first level of privacy, we consider two matrices neighboring if their difference has a Frobenius norm at most $1$. In the second level of privacy, we consider two matrices as neighboring if their difference can be represented as an outer product of two unit vectors. Both these privacy levels are stronger than those studied in the earlier papers such as Dwork {\it et al.} (STOC 2014), Hardt and Roth (STOC 2013), and Hardt and Price (NIPS 2014). As a corollary to our results, we get non-private algorithms that compute low-rank factorization in the turnstile update model with respect to the spectral norm. We note that, prior to this work, no algorithm that outputs low-rank factorization with respect to the spectral norm in the turnstile update model was known; i.e., our algorithm gives the first non-private low-rank factorization with respect to the spectral norm in the turnstile update mode.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)