Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Structural Correspondence Learning for Cross-lingual Sentiment Classification with One-to-many Mappings (1611.08737v1)

Published 26 Nov 2016 in cs.LG, cs.CL, and stat.ML

Abstract: Structural correspondence learning (SCL) is an effective method for cross-lingual sentiment classification. This approach uses unlabeled documents along with a word translation oracle to automatically induce task specific, cross-lingual correspondences. It transfers knowledge through identifying important features, i.e., pivot features. For simplicity, however, it assumes that the word translation oracle maps each pivot feature in source language to exactly only one word in target language. This one-to-one mapping between words in different languages is too strict. Also the context is not considered at all. In this paper, we propose a cross-lingual SCL based on distributed representation of words; it can learn meaningful one-to-many mappings for pivot words using large amounts of monolingual data and a small dictionary. We conduct experiments on NLP&CC 2013 cross-lingual sentiment analysis dataset, employing English as source language, and Chinese as target language. Our method does not rely on the parallel corpora and the experimental results show that our approach is more competitive than the state-of-the-art methods in cross-lingual sentiment classification.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.