Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On ($1$, $ε$)-Restricted Max-Min Fair Allocation Problem (1611.08060v1)

Published 24 Nov 2016 in cs.DM and cs.DS

Abstract: We study the max-min fair allocation problem in which a set of $m$ indivisible items are to be distributed among $n$ agents such that the minimum utility among all agents is maximized. In the restricted setting, the utility of each item $j$ on agent $i$ is either $0$ or some non-negative weight $w_j$. For this setting, Asadpour et al. showed that a certain configuration-LP can be used to estimate the optimal value within a factor of $4+\delta$, for any $\delta>0$, which was recently extended by Annamalai et al. to give a polynomial-time $13$-approximation algorithm for the problem. For hardness results, Bezakova and Dani showed that it is \NP-hard to approximate the problem within any ratio smaller than $2$. In this paper we consider the $(1,\epsilon)$-restricted max-min fair allocation problem in which each item $j$ is either heavy $(w_j = 1)$ or light $(w_j = \epsilon)$, for some parameter $\epsilon \in (0,1)$. We show that the $(1,\epsilon)$-restricted case is also \NP-hard to approximate within any ratio smaller than $2$. Hence, this simple special case is still algorithmically interesting. Using the configuration-LP, we are able to estimate the optimal value of the problem within a factor of $3+\delta$, for any $\delta>0$. Extending this idea, we also obtain a quasi-polynomial time $(3+4\epsilon)$-approximation algorithm and a polynomial time $9$-approximation algorithm. Moreover, we show that as $\epsilon$ tends to $0$, the approximation ratio of our polynomial-time algorithm approaches $3+2\sqrt{2}\approx 5.83$.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.