Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Programs as Black-Box Explanations (1611.07579v1)

Published 22 Nov 2016 in stat.ML, cs.AI, and cs.LG

Abstract: Recent work in model-agnostic explanations of black-box machine learning has demonstrated that interpretability of complex models does not have to come at the cost of accuracy or model flexibility. However, it is not clear what kind of explanations, such as linear models, decision trees, and rule lists, are the appropriate family to consider, and different tasks and models may benefit from different kinds of explanations. Instead of picking a single family of representations, in this work we propose to use "programs" as model-agnostic explanations. We show that small programs can be expressive yet intuitive as explanations, and generalize over a number of existing interpretable families. We propose a prototype program induction method based on simulated annealing that approximates the local behavior of black-box classifiers around a specific prediction using random perturbations. Finally, we present preliminary application on small datasets and show that the generated explanations are intuitive and accurate for a number of classifiers.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.