Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data Structures for Weighted Matching and Extensions to $b$-matching and $f$-factors (1611.07541v1)

Published 22 Nov 2016 in cs.DS

Abstract: This paper shows the weighted matching problem on general graphs can be solved in time $O(n(m + n\log n))$ for $n$ and $m$ the number of vertices and edges, respectively. This was previously known only for bipartite graphs. The crux is a data structure for blossom creation. It uses a dynamic nearest-common-ancestor algorithm to simplify blossom steps, so they involve only back edges rather than arbitrary nontree edges. The rest of the paper presents direct extensions of Edmonds' blossom algorithm to weighted $b$-matching and $f$-factors. Again the time bound is the one previously known for bipartite graphs: for $b$-matching the time is $O(\min{b(V),n\log n}(m + n\log n))$ and for $f$-factors the time is $O(\min{f(V),m\log n}( m + n\log n) )$, where $b(V)$ and $f(V)$ denote the sum of all degree constraints. Several immediate applications of the $f$-factor algorithm are given: The generalized shortest path structure of \cite{GS13}, i.e., the analog of the shortest path tree for conservative undirected graphs, is shown to be a version of the blossom structure for $f$-factors. This structure is found in time $O(|N|(m+n\log n))$ for $N$ the set of negative edges ($0<|N|<n$). A shortest $T$-join is found in time $O(n(m+n\log n))$, or $O(|T|(m+n\log n))$ when all costs are nonnegative. These bounds are all slight improvements of previously known ones, and are simply achieved by proper initialization of the $f$-factor algorithm.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)