Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Compositional Learning of Relation Path Embedding for Knowledge Base Completion (1611.07232v4)

Published 22 Nov 2016 in cs.CL

Abstract: Large-scale knowledge bases have currently reached impressive sizes; however, these knowledge bases are still far from complete. In addition, most of the existing methods for knowledge base completion only consider the direct links between entities, ignoring the vital impact of the consistent semantics of relation paths. In this paper, we study the problem of how to better embed entities and relations of knowledge bases into different low-dimensional spaces by taking full advantage of the additional semantics of relation paths, and we propose a compositional learning model of relation path embedding (RPE). Specifically, with the corresponding relation and path projections, RPE can simultaneously embed each entity into two types of latent spaces. It is also proposed that type constraints could be extended from traditional relation-specific constraints to the new proposed path-specific constraints. The results of experiments show that the proposed model achieves significant and consistent improvements compared with the state-of-the-art algorithms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.