Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bidiagonalization with Parallel Tiled Algorithms (1611.06892v1)

Published 18 Nov 2016 in cs.MS, cs.NA, math.NA, and math.RA

Abstract: We consider algorithms for going from a "full" matrix to a condensed "band bidiagonal" form using orthogonal transformations. We use the framework of "algorithms by tiles". Within this framework, we study: (i) the tiled bidiagonalization algorithm BiDiag, which is a tiled version of the standard scalar bidiagonalization algorithm; and (ii) the R-bidiagonalization algorithm R-BiDiag, which is a tiled version of the algorithm which consists in first performing the QR factorization of the initial matrix, then performing the band-bidiagonalization of the R-factor. For both bidiagonalization algorithms BiDiag and R-BiDiag, we use four main types of reduction trees, namely FlatTS, FlatTT, Greedy, and a newly introduced auto-adaptive tree, Auto. We provide a study of critical path lengths for these tiled algorithms, which shows that (i) R-BiDiag has a shorter critical path length than BiDiag for tall and skinny matrices, and (ii) Greedy based schemes are much better than earlier proposed variants with unbounded resources. We provide experiments on a single multicore node, and on a few multicore nodes of a parallel distributed shared-memory system, to show the superiority of the new algorithms on a variety of matrix sizes, matrix shapes and core counts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.