Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bidirectional Tree-Structured LSTM with Head Lexicalization (1611.06788v1)

Published 21 Nov 2016 in cs.CL

Abstract: Sequential LSTM has been extended to model tree structures, giving competitive results for a number of tasks. Existing methods model constituent trees by bottom-up combinations of constituent nodes, making direct use of input word information only for leaf nodes. This is different from sequential LSTMs, which contain reference to input words for each node. In this paper, we propose a method for automatic head-lexicalization for tree-structure LSTMs, propagating head words from leaf nodes to every constituent node. In addition, enabled by head lexicalization, we build a tree LSTM in the top-down direction, which corresponds to bidirectional sequential LSTM structurally. Experiments show that both extensions give better representations of tree structures. Our final model gives the best results on the Standford Sentiment Treebank and highly competitive results on the TREC question type classification task.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)