Papers
Topics
Authors
Recent
2000 character limit reached

On the convergence of gradient-like flows with noisy gradient input (1611.06730v2)

Published 21 Nov 2016 in math.OC, cs.LG, and math.DS

Abstract: In view of solving convex optimization problems with noisy gradient input, we analyze the asymptotic behavior of gradient-like flows under stochastic disturbances. Specifically, we focus on the widely studied class of mirror descent schemes for convex programs with compact feasible regions, and we examine the dynamics' convergence and concentration properties in the presence of noise. In the vanishing noise limit, we show that the dynamics converge to the solution set of the underlying problem (a.s.). Otherwise, when the noise is persistent, we show that the dynamics are concentrated around interior solutions in the long run, and they converge to boundary solutions that are sufficiently "sharp". Finally, we show that a suitably rectified variant of the method converges irrespective of the magnitude of the noise (or the structure of the underlying convex program), and we derive an explicit estimate for its rate of convergence.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.