Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Characterizing Polytopes Contained in the $0/1$-Cube with Bounded Chvátal-Gomory Rank (1611.06593v3)

Published 20 Nov 2016 in math.OC, cs.CC, and cs.DM

Abstract: Let $S \subseteq {0,1}n$ and $R$ be any polytope contained in $[0,1]n$ with $R \cap {0,1}n = S$. We prove that $R$ has bounded Chv\'atal-Gomory rank (CG-rank) provided that $S$ has bounded notch and bounded gap, where the notch is the minimum integer $p$ such that all $p$-dimensional faces of the $0/1$-cube have a nonempty intersection with $S$, and the gap is a measure of the size of the facet coefficients of $\mathsf{conv}(S)$. Let $H[\bar{S}]$ denote the subgraph of the $n$-cube induced by the vertices not in $S$. We prove that if $H[\bar{S}]$ does not contain a subdivision of a large complete graph, then both the notch and the gap are bounded. By our main result, this implies that the CG-rank of $R$ is bounded as a function of the treewidth of $H[\bar{S}]$. We also prove that if $S$ has notch $3$, then the CG-rank of $R$ is always bounded. Both results generalize a recent theorem of Cornu\'ejols and Lee, who proved that the CG-rank is bounded by a constant if the treewidth of $H[\bar{S}]$ is at most $2$.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.