A lower bound on the zero forcing number (1611.06557v4)
Abstract: In this note, we study a dynamic vertex coloring for a graph $G$. In particular, one starts with a certain set of vertices black, and all other vertices white. Then, at each time step, a black vertex with exactly one white neighbor forces its white neighbor to become black. The initial set of black vertices is called a \emph{zero forcing set} if by iterating this process, all of the vertices in $G$ become black. The \emph{zero forcing number} of $G$ is the minimum cardinality of a zero forcing set in $G$, and is denoted by $Z(G)$. Davila and Kenter have conjectured in 2015 that $Z(G)\geq (g-3)(\delta-2)+\delta$ where $g$ and $\delta$ denote the girth and the minimum degree of $G$, respectively. This conjecture has been proven for graphs with girth $g \leq 10$. In this note, we present a proof for $g \geq 5$, $\delta \geq 2$, thereby settling the conjecture.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.