Papers
Topics
Authors
Recent
2000 character limit reached

On MDS Negacyclic LCD Codes (1611.06371v3)

Published 19 Nov 2016 in cs.IT and math.IT

Abstract: Linear codes with complementary duals (LCD) have a great deal of significance amongst linear codes. Maximum distance separable (MDS) codes are also an important class of linear codes since they achieve the greatest error correcting and detecting capabilities for fixed length and dimension. The construction of linear codes that are both LCD and MDS is a hard task in coding theory. In this paper, we study the constructions of LCD codes that are MDS from negacyclic codes over finite fields of odd prime power $q$ elements. We construct four families of MDS negacyclic LCD codes of length $n|\frac{{q-1}}{2}$, $n|\frac{{q+1}}{2}$ and a family of negacyclic LCD codes of length $n=q-1$. Furthermore, we obtain five families of $q{2}$-ary Hermitian MDS negacyclic LCD codes of length $n|\left( q-1\right)$ and four families of Hermitian negacyclic LCD codes of length $n=q{2}+1.$ For both Euclidean and Hermitian cases the dimensions of these codes are determined and for some classes the minimum distances are settled. For the other cases, by studying $q$ and $q{2}$-cyclotomic classes we give lower bounds on the minimum distance.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.