Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online and Dynamic Algorithms for Set Cover (1611.05646v1)

Published 17 Nov 2016 in cs.DS

Abstract: In this paper, we study the set cover problem in the fully dynamic model. In this model, the set of active elements, i.e., those that must be covered at any given time, can change due to element arrivals and departures. The goal is to maintain an algorithmic solution that is competitive with respect to the current optimal solution. This model is popular in both the dynamic algorithms and online algorithms communities. The difference is in the restriction placed on the algorithm: in dynamic algorithms, the running time of the algorithm making updates (called update time) is bounded, while in online algorithms, the number of updates made to the solution (called recourse) is limited. In this paper we show the following results: In the update time setting, we obtain O(log n)-competitiveness with O(f log n) amortized update time, and O(f3)-competitiveness with O(f2) update time. The O(log n)-competitive algorithm is the first one to achieve a competitive ratio independent of f in this setting. In the recourse setting, we show a competitive ratio of O(min{log n,f}) with constant amortized recourse. Note that this matches the best offline bounds with just constant recourse, something that is impossible in the classical online model. Our results are based on two algorithmic frameworks in the fully-dynamic model that are inspired by the classic greedy and primal-dual algorithms for offline set cover. We show that both frameworks can be used for obtaining both recourse and update time bounds, thereby demonstrating algorithmic techniques common to these strands of research.

Citations (82)

Summary

We haven't generated a summary for this paper yet.