Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online and Dynamic Algorithms for Set Cover (1611.05646v1)

Published 17 Nov 2016 in cs.DS

Abstract: In this paper, we study the set cover problem in the fully dynamic model. In this model, the set of active elements, i.e., those that must be covered at any given time, can change due to element arrivals and departures. The goal is to maintain an algorithmic solution that is competitive with respect to the current optimal solution. This model is popular in both the dynamic algorithms and online algorithms communities. The difference is in the restriction placed on the algorithm: in dynamic algorithms, the running time of the algorithm making updates (called update time) is bounded, while in online algorithms, the number of updates made to the solution (called recourse) is limited. In this paper we show the following results: In the update time setting, we obtain O(log n)-competitiveness with O(f log n) amortized update time, and O(f3)-competitiveness with O(f2) update time. The O(log n)-competitive algorithm is the first one to achieve a competitive ratio independent of f in this setting. In the recourse setting, we show a competitive ratio of O(min{log n,f}) with constant amortized recourse. Note that this matches the best offline bounds with just constant recourse, something that is impossible in the classical online model. Our results are based on two algorithmic frameworks in the fully-dynamic model that are inspired by the classic greedy and primal-dual algorithms for offline set cover. We show that both frameworks can be used for obtaining both recourse and update time bounds, thereby demonstrating algorithmic techniques common to these strands of research.

Citations (82)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.