Convergence rate of stochastic k-means (1611.05132v1)
Abstract: We analyze online \cite{BottouBengio} and mini-batch \cite{Sculley} $k$-means variants. Both scale up the widely used $k$-means algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that starting with any initial solution, they converge to a "local optimum" at rate $O(\frac{1}{t})$ (in terms of the $k$-means objective) under general conditions. In addition, we show if the dataset is clusterable, when initialized with a simple and scalable seeding algorithm, mini-batch $k$-means converges to an optimal $k$-means solution at rate $O(\frac{1}{t})$ with high probability. The $k$-means objective is non-convex and non-differentiable: we exploit ideas from recent work on stochastic gradient descent for non-convex problems \cite{ge:sgd_tensor, balsubramani13} by providing a novel characterization of the trajectory of $k$-means algorithm on its solution space, and circumvent the non-differentiability problem via geometric insights about $k$-means update.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.