Emergent Mind

Convergence rate of stochastic k-means

(1611.05132)
Published Nov 16, 2016 in cs.LG

Abstract

We analyze online \cite{BottouBengio} and mini-batch \cite{Sculley} $k$-means variants. Both scale up the widely used $k$-means algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that starting with any initial solution, they converge to a "local optimum" at rate $O(\frac{1}{t})$ (in terms of the $k$-means objective) under general conditions. In addition, we show if the dataset is clusterable, when initialized with a simple and scalable seeding algorithm, mini-batch $k$-means converges to an optimal $k$-means solution at rate $O(\frac{1}{t})$ with high probability. The $k$-means objective is non-convex and non-differentiable: we exploit ideas from recent work on stochastic gradient descent for non-convex problems \cite{ge:sgd_tensor, balsubramani13} by providing a novel characterization of the trajectory of $k$-means algorithm on its solution space, and circumvent the non-differentiability problem via geometric insights about $k$-means update.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.