Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence rate of stochastic k-means (1611.05132v1)

Published 16 Nov 2016 in cs.LG

Abstract: We analyze online \cite{BottouBengio} and mini-batch \cite{Sculley} $k$-means variants. Both scale up the widely used $k$-means algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that starting with any initial solution, they converge to a "local optimum" at rate $O(\frac{1}{t})$ (in terms of the $k$-means objective) under general conditions. In addition, we show if the dataset is clusterable, when initialized with a simple and scalable seeding algorithm, mini-batch $k$-means converges to an optimal $k$-means solution at rate $O(\frac{1}{t})$ with high probability. The $k$-means objective is non-convex and non-differentiable: we exploit ideas from recent work on stochastic gradient descent for non-convex problems \cite{ge:sgd_tensor, balsubramani13} by providing a novel characterization of the trajectory of $k$-means algorithm on its solution space, and circumvent the non-differentiability problem via geometric insights about $k$-means update.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Cheng Tang (26 papers)
  2. Claire Monteleoni (23 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.