Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights (1611.04924v2)

Published 15 Nov 2016 in cs.LG

Abstract: In a semi-supervised learning scenario, (possibly noisy) partially observed labels are used as input to train a classifier, in order to assign labels to unclassified samples. In this paper, we study this classifier learning problem from a graph signal processing (GSP) perspective. Specifically, by viewing a binary classifier as a piecewise constant graph-signal in a high-dimensional feature space, we cast classifier learning as a signal restoration problem via a classical maximum a posteriori (MAP) formulation. Unlike previous graph-signal restoration works, we consider in addition edges with negative weights that signify anti-correlation between samples. One unfortunate consequence is that the graph Laplacian matrix $\mathbf{L}$ can be indefinite, and previously proposed graph-signal smoothness prior $\mathbf{x}T \mathbf{L} \mathbf{x}$ for candidate signal $\mathbf{x}$ can lead to pathological solutions. In response, we derive an optimal perturbation matrix $\boldsymbol{\Delta}$ - based on a fast lower-bound computation of the minimum eigenvalue of $\mathbf{L}$ via a novel application of the Haynsworth inertia additivity formula---so that $\mathbf{L} + \boldsymbol{\Delta}$ is positive semi-definite, resulting in a stable signal prior. Further, instead of forcing a hard binary decision for each sample, we define the notion of generalized smoothness on graph that promotes ambiguity in the classifier signal. Finally, we propose an algorithm based on iterative reweighted least squares (IRLS) that solves the posed MAP problem efficiently. Extensive simulation results show that our proposed algorithm outperforms both SVM variants and graph-based classifiers using positive-edge graphs noticeably.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube