Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Link Prediction using Embedded Knowledge Graphs (1611.04642v5)

Published 14 Nov 2016 in cs.AI, cs.CL, and cs.LG

Abstract: Since large knowledge bases are typically incomplete, missing facts need to be inferred from observed facts in a task called knowledge base completion. The most successful approaches to this task have typically explored explicit paths through sequences of triples. These approaches have usually resorted to human-designed sampling procedures, since large knowledge graphs produce prohibitively large numbers of possible paths, most of which are uninformative. As an alternative approach, we propose performing a single, short sequence of interactive lookup operations on an embedded knowledge graph which has been trained through end-to-end backpropagation to be an optimized and compressed version of the initial knowledge base. Our proposed model, called Embedded Knowledge Graph Network (EKGN), achieves new state-of-the-art results on popular knowledge base completion benchmarks.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.