Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A New Recurrent Neural CRF for Learning Non-linear Edge Features (1611.04233v1)

Published 14 Nov 2016 in cs.CL

Abstract: Conditional Random Field (CRF) and recurrent neural models have achieved success in structured prediction. More recently, there is a marriage of CRF and recurrent neural models, so that we can gain from both non-linear dense features and globally normalized CRF objective. These recurrent neural CRF models mainly focus on encode node features in CRF undirected graphs. However, edge features prove important to CRF in structured prediction. In this work, we introduce a new recurrent neural CRF model, which learns non-linear edge features, and thus makes non-linear features encoded completely. We compare our model with different neural models in well-known structured prediction tasks. Experiments show that our model outperforms state-of-the-art methods in NP chunking, shallow parsing, Chinese word segmentation and POS tagging.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)