Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A New Recurrent Neural CRF for Learning Non-linear Edge Features (1611.04233v1)

Published 14 Nov 2016 in cs.CL

Abstract: Conditional Random Field (CRF) and recurrent neural models have achieved success in structured prediction. More recently, there is a marriage of CRF and recurrent neural models, so that we can gain from both non-linear dense features and globally normalized CRF objective. These recurrent neural CRF models mainly focus on encode node features in CRF undirected graphs. However, edge features prove important to CRF in structured prediction. In this work, we introduce a new recurrent neural CRF model, which learns non-linear edge features, and thus makes non-linear features encoded completely. We compare our model with different neural models in well-known structured prediction tasks. Experiments show that our model outperforms state-of-the-art methods in NP chunking, shallow parsing, Chinese word segmentation and POS tagging.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.