Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Non-convex Geometry of Low-rank Matrix Optimization (1611.03060v3)

Published 9 Nov 2016 in cs.IT, math.IT, and math.OC

Abstract: This work considers two popular minimization problems: (i) the minimization of a general convex function $f(\mathbf{X})$ with the domain being positive semi-definite matrices; (ii) the minimization of a general convex function $f(\mathbf{X})$ regularized by the matrix nuclear norm $|\mathbf{X}|*$ with the domain being general matrices. Despite their optimal statistical performance in the literature, these two optimization problems have a high computational complexity even when solved using tailored fast convex solvers. To develop faster and more scalable algorithms, we follow the proposal of Burer and Monteiro to factor the low-rank variable $\mathbf{X} = \mathbf{U}\mathbf{U}\top $ (for semi-definite matrices) or $\mathbf{X}=\mathbf{U}\mathbf{V}\top $ (for general matrices) and also replace the nuclear norm $|\mathbf{X}|*$ with $(|\mathbf{U}|_F2+|\mathbf{V}|_F2)/2$. In spite of the non-convexity of the resulting factored formulations, we prove that each critical point either corresponds to the global optimum of the original convex problems or is a strict saddle where the Hessian matrix has a strictly negative eigenvalue. Such a nice geometric structure of the factored formulations allows many local search algorithms to find a global optimizer even with random initializations.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.