Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

An Optimal Ancestry Labeling Scheme with Applications to XML Trees and Universal Posets (1611.02589v1)

Published 8 Nov 2016 in cs.DS and cs.DC

Abstract: In this paper we solve the ancestry-labeling scheme problem which aims at assigning the shortest possible labels (bit strings) to nodes of rooted trees, so that ancestry queries between any two nodes can be answered by inspecting their assigned labels only. This problem was introduced more than twenty years ago by Kannan et al. [STOC '88], and is among the most well-studied problems in the field of informative labeling schemes. We construct an ancestry-labeling scheme for $n$-node trees with label size $\log_2 n + O(\log \log n)$ bits, thus matching the $\log_2 n + O(\log \log n)$ bits lower bound given by Alstrup et al. [SODA '03]. Our scheme is based on a simplified ancestry scheme that operates extremely well on a restricted set of trees. In particular, for the set of n-node trees with depth at most d, the simplified ancestry scheme enjoys label size of $\log_2 n + 2 \log_2 d + O(1)$ bits. Since the depth of most XML trees is at most some small constant, such an ancestry scheme may be of practical use. In addition, we also obtain an adjacency-labeling scheme that labels n-node trees of depth d with labels of size $\log_2 n + 3 \log_2 d + O(1)$ bits. All our schemes assign the labels in linear time, and guarantee that any query can be answered in constant time. Finally, our ancestry scheme finds applications to the construction of small universal partially ordered sets (posets). Specifically, for any fixed integer k, it enables the construction of a universal poset of size $\tilde O(nk)$ for the family of $n$-element posets with tree-dimension at most $k$. Up to lower order terms, this bound is tight thanks to a lower bound of $n{k-o(1)}$ due to Alon and Scheinerman [Order '88].

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube