Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Big-Data Approach to Handle Many Process Variations: Tensor Recovery and Applications (1611.02256v1)

Published 7 Nov 2016 in cs.CE, math.NA, and stat.CO

Abstract: Fabrication process variations are a major source of yield degradation in the nano-scale design of integrated circuits (IC), microelectromechanical systems (MEMS) and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, these algorithms suffer from the curse of dimensionality; i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big-data perspective. Specifically, we show that the huge number of (e.g., $1.5 \times 10{27}$) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., $500$) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints; and it is solved with an alternating minimization approach. Numerical results show that our approach can simulate efficiently some ICs, as well as MEMS and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only handle several random parameters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.