Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

MTS Sketch for Accurate Estimation of Set-Expression Cardinalities from Small Samples (1611.01853v1)

Published 6 Nov 2016 in cs.DB and cs.DS

Abstract: Sketch-based streaming algorithms allow efficient processing of big data. These algorithms use small fixed-size storage to store a summary ("sketch") of the input data, and use probabilistic algorithms to estimate the desired quantity. However, in many real-world applications it is impractical to collect and process the entire data stream, the common practice is thus to sample and process only a small part of it. While sampling is crucial for handling massive data sets, it may reduce accuracy. In this paper we present a new framework that can accurately estimate the cardinality of any set expression between any number of streams using only a small sample of each stream. The proposed framework consists of a new sketch, called Maximal-Term with Subsample (MTS), and a family of algorithms that use this sketch. An example of a possible query that can be efficiently answered using the proposed sketch is, How many distinct tuples appear in tables $T_1$ and $T_2$, but not in $T_3$? The algorithms presented in this paper answer such queries accurately, processing only a small sample of the tuples in each table and using a constant amount of memory. Such estimations are useful for the optimization of queries over very large database systems. We show that all our algorithms are unbiased, and we analyze their asymptotic variance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.