Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Spanning Trees in Multipartite Geometric Graphs (1611.01661v1)

Published 5 Nov 2016 in cs.CG

Abstract: Let $R$ and $B$ be two disjoint sets of points in the plane where the points of $R$ are colored red and the points of $B$ are colored blue, and let $n=|R\cup B|$. A bichromatic spanning tree is a spanning tree in the complete bipartite geometric graph with bipartition $(R,B)$. The minimum (respectively maximum) bichromatic spanning tree problem is the problem of computing a bichromatic spanning tree of minimum (respectively maximum) total edge length. 1. We present a simple algorithm that solves the minimum bichromatic spanning tree problem in $O(n\log3 n)$ time. This algorithm can easily be extended to solve the maximum bichromatic spanning tree problem within the same time bound. It also can easily be generalized to multicolored point sets. 2. We present $\Theta(n\log n)$-time algorithms that solve the minimum and the maximum bichromatic spanning tree problems. 3. We extend the bichromatic spanning tree algorithms and solve the multicolored version of these problems in $O(n\log n\log k)$ time, where $k$ is the number of different colors (or the size of the multipartition in a complete multipartite geometric graph).

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.