Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Tensor Decomposition via Variational Auto-Encoder (1611.00866v1)

Published 3 Nov 2016 in stat.ML

Abstract: Tensor decomposition is an important technique for capturing the high-order interactions among multiway data. Multi-linear tensor composition methods, such as the Tucker decomposition and the CANDECOMP/PARAFAC (CP), assume that the complex interactions among objects are multi-linear, and are thus insufficient to represent nonlinear relationships in data. Another assumption of these methods is that a predefined rank should be known. However, the rank of tensors is hard to estimate, especially for cases with missing values. To address these issues, we design a Bayesian generative model for tensor decomposition. Different from the traditional Bayesian methods, the high-order interactions of tensor entries are modeled with variational auto-encoder. The proposed model takes advantages of Neural Networks and nonparametric Bayesian models, by replacing the multi-linear product in traditional Bayesian tensor decomposition with a complex nonlinear function (via Neural Networks) whose parameters can be learned from data. Experimental results on synthetic data and real-world chemometrics tensor data have demonstrated that our new model can achieve significantly higher prediction performance than the state-of-the-art tensor decomposition approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.