Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling and Estimation for (Sparse) Exchangeable Graphs (1611.00843v1)

Published 2 Nov 2016 in math.ST, cs.SI, math.CO, and stat.TH

Abstract: Sparse exchangeable graphs on $\mathbb{R}_+$, and the associated graphex framework for sparse graphs, generalize exchangeable graphs on $\mathbb{N}$, and the associated graphon framework for dense graphs. We develop the graphex framework as a tool for statistical network analysis by identifying the sampling scheme that is naturally associated with the models of the framework, and by introducing a general consistent estimator for the parameter (the graphex) underlying these models. The sampling scheme is a modification of independent vertex sampling that throws away vertices that are isolated in the sampled subgraph. The estimator is a dilation of the empirical graphon estimator, which is known to be a consistent estimator for dense exchangeable graphs; both can be understood as graph analogues to the empirical distribution in the i.i.d. sequence setting. Our results may be viewed as a generalization of consistent estimation via the empirical graphon from the dense graph regime to also include sparse graphs.

Citations (48)

Summary

We haven't generated a summary for this paper yet.