Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Approximating Cycles in Directed Graphs: Fast Algorithms for Girth and Roundtrip Spanners (1611.00721v2)

Published 2 Nov 2016 in cs.DS

Abstract: The girth of a graph, i.e. the length of its shortest cycle, is a fundamental graph parameter. Unfortunately all known algorithms for computing, even approximately, the girth and girth-related structures in directed weighted $m$-edge and $n$-node graphs require $\Omega(\min{n{\omega}, mn})$ time (for $2\leq\omega<2.373$). In this paper, we drastically improve these runtimes as follows: * Multiplicative Approximations in Nearly Linear Time: We give an algorithm that in $\widetilde{O}(m)$ time computes an $\widetilde{O}(1)$-multiplicative approximation of the girth as well as an $\widetilde{O}(1)$-multiplicative roundtrip spanner with $\widetilde{O}(n)$ edges with high probability (w.h.p). * Nearly Tight Additive Approximations: For unweighted graphs and any $\alpha \in (0,1)$ we give an algorithm that in $\widetilde{O}(mn{1 - \alpha})$ time computes an $O(n\alpha)$-additive approximation of the girth w.h.p, and partially derandomize it. We show that the runtime of our algorithm cannot be significantly improved without a breakthrough in combinatorial Boolean matrix multiplication. Our main technical contribution to achieve these results is the first nearly linear time algorithm for computing roundtrip covers, a directed graph decomposition concept key to previous roundtrip spanner constructions. Previously it was not known how to compute these significantly faster than $\Omega(\min{n\omega, mn})$ time. Given the traditional difficulty in efficiently processing directed graphs, we hope our techniques may find further applications.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.