Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured illumination microscopy with unknown patterns and a statistical prior (1611.00287v2)

Published 26 Oct 2016 in cs.CV and physics.optics

Abstract: Structured illumination microscopy (SIM) improves resolution by down-modulating high-frequency information of an object to fit within the passband of the optical system. Generally, the reconstruction process requires prior knowledge of the illumination patterns, which implies a well-calibrated and aberration-free system. Here, we propose a new \textit{algorithmic self-calibration} strategy for SIM that does not need to know the exact patterns {\it a priori}, but only their covariance. The algorithm, termed PE-SIMS, includes a Pattern-Estimation (PE) step requiring the uniformity of the sum of the illumination patterns and a SIM reconstruction procedure using a Statistical prior (SIMS). Additionally, we perform a pixel reassignment process (SIMS-PR) to enhance the reconstruction quality. We achieve 2$\times$ better resolution than a conventional widefield microscope, while remaining insensitive to aberration-induced pattern distortion and robust against parameter tuning.

Citations (66)

Summary

We haven't generated a summary for this paper yet.