Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem (1610.10085v3)

Published 31 Oct 2016 in math.AT, cs.CG, and math.CT

Abstract: Persistent homology, a central tool of topological data analysis, provides invariants of data called barcodes (also known as persistence diagrams). A barcode is simply a multiset of real intervals. Recent work of Edelsbrunner, Jablonski, and Mrozek suggests an equivalent description of barcodes as functors R -> Mch, where R is the poset category of real numbers and Mch is the category whose objects are sets and whose morphisms are matchings (i.e., partial injective functions). Such functors form a category MchR whose morphisms are the natural transformations. Thus, this interpretation of barcodes gives us a hitherto unstudied categorical structure on barcodes. The aim of this note is to show that this categorical structure leads to surprisingly simple reformulations of both the well-known stability theorem for persistent homology and a recent generalization called the induced matching theorem.

Citations (34)

Summary

We haven't generated a summary for this paper yet.