Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem (1610.10085v3)
Abstract: Persistent homology, a central tool of topological data analysis, provides invariants of data called barcodes (also known as persistence diagrams). A barcode is simply a multiset of real intervals. Recent work of Edelsbrunner, Jablonski, and Mrozek suggests an equivalent description of barcodes as functors R -> Mch, where R is the poset category of real numbers and Mch is the category whose objects are sets and whose morphisms are matchings (i.e., partial injective functions). Such functors form a category MchR whose morphisms are the natural transformations. Thus, this interpretation of barcodes gives us a hitherto unstudied categorical structure on barcodes. The aim of this note is to show that this categorical structure leads to surprisingly simple reformulations of both the well-known stability theorem for persistent homology and a recent generalization called the induced matching theorem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.