Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Learning with Nonconvex L1-2 Regularization (1610.09461v3)

Published 29 Oct 2016 in cs.LG, cs.NA, and math.NA

Abstract: Convex regularizers are often used for sparse learning. They are easy to optimize, but can lead to inferior prediction performance. The difference of $\ell_1$ and $\ell_2$ ($\ell_{1-2}$) regularizer has been recently proposed as a nonconvex regularizer. It yields better recovery than both $\ell_0$ and $\ell_1$ regularizers on compressed sensing. However, how to efficiently optimize its learning problem is still challenging. The main difficulty is that both the $\ell_1$ and $\ell_2$ norms in $\ell_{1-2}$ are not differentiable, and existing optimization algorithms cannot be applied. In this paper, we show that a closed-form solution can be derived for the proximal step associated with this regularizer. We further extend the result for low-rank matrix learning and the total variation model. Experiments on both synthetic and real data sets show that the resultant accelerated proximal gradient algorithm is more efficient than other noncovex optimization algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Quanming Yao (102 papers)
  2. James T. Kwok (65 papers)
  3. Xiawei Guo (7 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.