Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Performance evaluation of explicit finite difference algorithms with varying amounts of computational and memory intensity (1610.09146v1)

Published 28 Oct 2016 in cs.DS, cs.DC, cs.MS, physics.comp-ph, and physics.flu-dyn

Abstract: Future architectures designed to deliver exascale performance motivate the need for novel algorithmic changes in order to fully exploit their capabilities. In this paper, the performance of several numerical algorithms, characterised by varying degrees of memory and computational intensity, are evaluated in the context of finite difference methods for fluid dynamics problems. It is shown that, by storing some of the evaluated derivatives as single thread- or process-local variables in memory, or recomputing the derivatives on-the-fly, a speed-up of ~2 can be obtained compared to traditional algorithms that store all derivatives in global arrays.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube