Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Single- and Multi-Task Architectures for Surgical Workflow Challenge at M2CAI 2016 (1610.08844v2)

Published 27 Oct 2016 in cs.CV

Abstract: The surgical workflow challenge at M2CAI 2016 consists of identifying 8 surgical phases in cholecystectomy procedures. Here, we propose to use deep architectures that are based on our previous work where we presented several architectures to perform multiple recognition tasks on laparoscopic videos. In this technical report, we present the phase recognition results using two architectures: (1) a single-task architecture designed to perform solely the surgical phase recognition task and (2) a multi-task architecture designed to perform jointly phase recognition and tool presence detection. On top of these architectures we propose to use two different approaches to enforce the temporal constraints of the surgical workflow: (1) HMM-based and (2) LSTM-based pipelines. The results show that the LSTM-based approach is able to outperform the HMM-based approach and also to properly enforce the temporal constraints into the recognition process.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.