Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stratification of patient trajectories using covariate latent variable models (1610.08735v2)

Published 27 Oct 2016 in stat.ML, q-bio.GN, and q-bio.QM

Abstract: Standard models assign disease progression to discrete categories or stages based on well-characterized clinical markers. However, such a system is potentially at odds with our understanding of the underlying biology, which in highly complex systems may support a (near-)continuous evolution of disease from inception to terminal state. To learn such a continuous disease score one could infer a latent variable from dynamic "omics" data such as RNA-seq that correlates with an outcome of interest such as survival time. However, such analyses may be confounded by additional data such as clinical covariates measured in electronic health records (EHRs). As a solution to this we introduce covariate latent variable models, a novel type of latent variable model that learns a low-dimensional data representation in the presence of two (asymmetric) views of the same data source. We apply our model to TCGA colorectal cancer RNA-seq data and demonstrate how incorporating microsatellite-instability (MSI) status as an external covariate allows us to identify genes that stratify patients on an immune-response trajectory. Finally, we propose an extension termed Covariate Gaussian Process Latent Variable Models for learning nonparametric, nonlinear representations. An R package implementing variational inference for covariate latent variable models is available at http://github.com/kieranrcampbell/clvm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com