Papers
Topics
Authors
Recent
2000 character limit reached

Improving PageRank for Local Community Detection

Published 27 Oct 2016 in cs.SI and physics.soc-ph | (1610.08722v2)

Abstract: Community detection is a classical problem in the field of graph mining. While most algorithms work on the entire graph, it is often interesting in practice to recover only the community containing some given set of seed nodes. In this paper, we propose a novel approach to this problem, using some low-dimensional embedding of the graph based on random walks starting from the seed nodes. From this embedding, we propose some simple yet efficient versions of the PageRank algorithm as well as a novel algorithm, called WalkSCAN, that is able to detect multiple communities, possibly overlapping. We provide insights into the performance of these algorithms through the theoretical analysis of a toy network and show that WalkSCAN outperforms existing algorithms on real networks.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.