Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 44 tok/s
Gemini 2.5 Flash 162 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On-line algorithms for multiplication and division in real and complex numeration systems (1610.08309v5)

Published 26 Oct 2016 in cs.DS

Abstract: A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A={-1,0,1}$; base $\beta=2i$ with digits $A = {-2,-1, 0,1,2}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = {0, \pm 1, \pm \omega, \pm \omega2 }$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.