Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Improved Approach for Prediction of Parkinson's Disease using Machine Learning Techniques (1610.08250v1)

Published 26 Oct 2016 in cs.LG

Abstract: Parkinson's disease (PD) is one of the major public health problems in the world. It is a well-known fact that around one million people suffer from Parkinson's disease in the United States whereas the number of people suffering from Parkinson's disease worldwide is around 5 million. Thus, it is important to predict Parkinson's disease in early stages so that early plan for the necessary treatment can be made. People are mostly familiar with the motor symptoms of Parkinson's disease, however, an increasing amount of research is being done to predict the Parkinson's disease from non-motor symptoms that precede the motor ones. If an early and reliable prediction is possible then a patient can get a proper treatment at the right time. Nonmotor symptoms considered are Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) and olfactory loss. Developing machine learning models that can help us in predicting the disease can play a vital role in early prediction. In this paper, we extend a work which used the non-motor features such as RBD and olfactory loss. Along with this the extended work also uses important biomarkers. In this paper, we try to model this classifier using different machine learning models that have not been used before. We developed automated diagnostic models using Multilayer Perceptron, BayesNet, Random Forest and Boosted Logistic Regression. It has been observed that Boosted Logistic Regression provides the best performance with an impressive accuracy of 97.159 % and the area under the ROC curve was 98.9%. Thus, it is concluded that these models can be used for early prediction of Parkinson's disease.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.