Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dis-S2V: Discourse Informed Sen2Vec (1610.08078v1)

Published 25 Oct 2016 in cs.CL and cs.IR

Abstract: Vector representation of sentences is important for many text processing tasks that involve clustering, classifying, or ranking sentences. Recently, distributed representation of sentences learned by neural models from unlabeled data has been shown to outperform the traditional bag-of-words representation. However, most of these learning methods consider only the content of a sentence and disregard the relations among sentences in a discourse by and large. In this paper, we propose a series of novel models for learning latent representations of sentences (Sen2Vec) that consider the content of a sentence as well as inter-sentence relations. We first represent the inter-sentence relations with a language network and then use the network to induce contextual information into the content-based Sen2Vec models. Two different approaches are introduced to exploit the information in the network. Our first approach retrofits (already trained) Sen2Vec vectors with respect to the network in two different ways: (1) using the adjacency relations of a node, and (2) using a stochastic sampling method which is more flexible in sampling neighbors of a node. The second approach uses a regularizer to encode the information in the network into the existing Sen2Vec model. Experimental results show that our proposed models outperform existing methods in three fundamental information system tasks demonstrating the effectiveness of our approach. The models leverage the computational power of multi-core CPUs to achieve fine-grained computational efficiency. We make our code publicly available upon acceptance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.