Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hardness of approximation for strip packing (1610.07766v1)

Published 25 Oct 2016 in cs.DS and cs.CC

Abstract: Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, e.g. in scheduling and stock-cutting, and has been studied extensively. When the dimensions of objects are allowed to be exponential in the total input size, it is known that the problem cannot be approximated within a factor better than $3/2$, unless $\mathrm{P}=\mathrm{NP}$. However, there was no corresponding lower bound for polynomially bounded input data. In fact, Nadiradze and Wiese [SODA 2016] have recently proposed a $(1.4 + \epsilon)$ approximation algorithm for this variant, thus showing that strip packing with polynomially bounded data can be approximated better than when exponentially large values in the input data are allowed. Their result has subsequently been improved to a $(4/3 + \epsilon)$ approximation by two independent research groups [FSTTCS 2016, arXiv:1610.04430]. This raises a question whether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related two-dimensional packing problems like maximum independent set of rectangles or two-dimensional knapsack. In this paper we answer this question in negative by proving that it is NP-hard to approximate strip packing within a factor better than $12/11$, even when admitting only polynomially bounded input data. In particular, this shows that the strip packing problem admits no quasi-polynomial time approximation scheme, unless $\mathrm{NP} \subseteq \mathrm{DTIME}(2{\mathrm{polylog}(n)})$.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.