Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Local Maxima and Improved Exact Algorithm for MAX-2-SAT (1610.07100v1)

Published 22 Oct 2016 in cs.DS and cond-mat.stat-mech

Abstract: Given a MAX-2-SAT instance, we define a local maximum to be an assignment such that changing any single variable reduces the number of satisfied clauses. We consider the question of the number of local maxima that an instance of MAX-2-SAT can have. We give upper bounds in both the sparse and nonsparse case, where the sparse case means that there is a bound $d$ on the average number of clauses involving any given variable. The bounds in the nonsparse case are tight up to polylogarithmic factors, while in the sparse case the bounds are tight up to a multiplicative factor in $d$ for large $d$. Additionally, we generalize to the question of assignments which are maxima up to changing $k> 1$ variables simultaneously; in this case, we give explicit constructions with large (in a sense explained below) numbers of such maxima in the sparse case. The basic idea of the upper bound proof is to consider a random assignment to some subset of the variables and determine the probability that some fraction of the remaining variables can be fixed without considering interactions between them. The bounded results hold in the case of weighted MAX-2-SAT as well. Using this technique and combining with ideas from Ref. 6, we find an algorithm for weighted MAX-2-SAT which is faster for large $d$ than previous algorithms which use polynomial space; this algorithm does require an additional bounds on maximum weights and degree.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)