Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Strong convergence analysis of the stochastic exponential Rosenbrock scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise (1610.06790v2)

Published 21 Oct 2016 in math.NA and cs.NA

Abstract: In this paper, we consider the numerical approximation of a general second order semilinear stochastic partial differential equation (SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part also called stochastic reactive dominated transport equations. Most numerical techniques, including current stochastic exponential integrators lose their good stability properties on such equations. Using finite element for space discretization, we propose a new scheme appropriated on such equations, called stochastic exponential Rosenbrock scheme (SERS) based on local linearization at every time step of the semi-discrete equation obtained after space discretization. We consider noise that is in a trace class and give a strong convergence proof of the new scheme toward the exact solution in the root-mean-square $L2$ norm. Numerical experiments to sustain theoretical results are provided.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube