Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Proposing Plausible Answers for Open-ended Visual Question Answering (1610.06620v2)

Published 20 Oct 2016 in cs.CL, cs.AI, and cs.CV

Abstract: Answering open-ended questions is an essential capability for any intelligent agent. One of the most interesting recent open-ended question answering challenges is Visual Question Answering (VQA) which attempts to evaluate a system's visual understanding through its answers to natural language questions about images. There exist many approaches to VQA, the majority of which do not exhibit deeper semantic understanding of the candidate answers they produce. We study the importance of generating plausible answers to a given question by introducing the novel task of `Answer Proposal': for a given open-ended question, a system should generate a ranked list of candidate answers informed by the semantics of the question. We experiment with various models including a neural generative model as well as a semantic graph matching one. We provide both intrinsic and extrinsic evaluations for the task of Answer Proposal, showing that our best model learns to propose plausible answers with a high recall and performs competitively with some other solutions to VQA.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.