Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Jointly Learning to Align and Convert Graphemes to Phonemes with Neural Attention Models (1610.06540v1)

Published 20 Oct 2016 in cs.CL and cs.AI

Abstract: We propose an attention-enabled encoder-decoder model for the problem of grapheme-to-phoneme conversion. Most previous work has tackled the problem via joint sequence models that require explicit alignments for training. In contrast, the attention-enabled encoder-decoder model allows for jointly learning to align and convert characters to phonemes. We explore different types of attention models, including global and local attention, and our best models achieve state-of-the-art results on three standard data sets (CMUDict, Pronlex, and NetTalk).

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.