Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Particle Swarm Optimization for Generating Interpretable Fuzzy Reinforcement Learning Policies (1610.05984v5)

Published 19 Oct 2016 in cs.NE, cs.AI, cs.LG, and cs.SY

Abstract: Fuzzy controllers are efficient and interpretable system controllers for continuous state and action spaces. To date, such controllers have been constructed manually or trained automatically either using expert-generated problem-specific cost functions or incorporating detailed knowledge about the optimal control strategy. Both requirements for automatic training processes are not found in most real-world reinforcement learning (RL) problems. In such applications, online learning is often prohibited for safety reasons because online learning requires exploration of the problem's dynamics during policy training. We introduce a fuzzy particle swarm reinforcement learning (FPSRL) approach that can construct fuzzy RL policies solely by training parameters on world models that simulate real system dynamics. These world models are created by employing an autonomous machine learning technique that uses previously generated transition samples of a real system. To the best of our knowledge, this approach is the first to relate self-organizing fuzzy controllers to model-based batch RL. Therefore, FPSRL is intended to solve problems in domains where online learning is prohibited, system dynamics are relatively easy to model from previously generated default policy transition samples, and it is expected that a relatively easily interpretable control policy exists. The efficiency of the proposed approach with problems from such domains is demonstrated using three standard RL benchmarks, i.e., mountain car, cart-pole balancing, and cart-pole swing-up. Our experimental results demonstrate high-performing, interpretable fuzzy policies.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.