Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Proximity-Aware Balanced Allocations in Cache Networks (1610.05961v2)

Published 19 Oct 2016 in cs.DS, cs.IT, cs.NI, and math.IT

Abstract: We consider load balancing in a network of caching servers delivering contents to end users. Randomized load balancing via the so-called power of two choices is a well-known approach in parallel and distributed systems that reduces network imbalance. In this paper, we propose a randomized load balancing scheme which simultaneously considers cache size limitation and proximity in the server redirection process. Since the memory limitation and the proximity constraint cause correlation in the server selection process, we may not benefit from the power of two choices in general. However, we prove that in certain regimes, in terms of memory limitation and proximity constraint, our scheme results in the maximum load of order $\Theta(\log\log n)$ (here $n$ is the number of servers and requests), and at the same time, leads to a low communication cost. This is an exponential improvement in the maximum load compared to the scheme which assigns each request to the nearest available replica. Finally, we investigate our scheme performance by extensive simulations.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.