Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Link Prediction in evolving networks based on the popularity of nodes (1610.05347v1)

Published 12 Sep 2016 in cs.SI, physics.data-an, and physics.soc-ph

Abstract: Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict the missing edges or identify the spurious edges, and attracts much attention from various fields. The key issue of link prediction is to estimate the likelihood of two nodes in networks. Most current approaches of link prediction base on static structural analysis and ignore the temporal aspects of evolving networks. Unlike previous work, in this paper, we propose a popularity based structural perturbation method (PBSPM) that characterizes the similarity of an edge not only from existing connections of networks, but also from the popularity of its two endpoints, since popular nodes have much more probability to form links between themselves. By taking popularity of nodes into account, PBSPM could suppress nodes that have high importance, but gradually become inactive. Therefore the proposed method is inclined to predict potential edges between active nodes, rather than edges between inactive nodes. Experimental results on four real networks show that the proposed method outperforms the state-of-the-art methods both in accuracy and robustness in evolving networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube