Spatio-temporal Co-Occurrence Characterizations for Human Action Classification (1610.05174v1)
Abstract: The human action classification task is a widely researched topic and is still an open problem. Many state-of-the-arts approaches involve the usage of bag-of-video-words with spatio-temporal local features to construct characterizations for human actions. In order to improve beyond this standard approach, we investigate the usage of co-occurrences between local features. We propose the usage of co-occurrences information to characterize human actions. A trade-off factor is used to define an optimal trade-off between vocabulary size and classification rate. Next, a spatio-temporal co-occurrence technique is applied to extract co-occurrence information between labeled local features. Novel characterizations for human actions are then constructed. These include a vector quantized correlogram-elements vector, a highly discriminative PCA (Principal Components Analysis) co-occurrence vector and a Haralick texture vector. Multi-channel kernel SVM (support vector machine) is utilized for classification. For evaluation, the well known KTH as well as the challenging UCF-Sports action datasets are used. We obtained state-of-the-arts classification performance. We also demonstrated that we are able to fully utilize co-occurrence information, and improve the standard bag-of-video-words approach.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.