Papers
Topics
Authors
Recent
2000 character limit reached

Convergence rate of stochastic k-means (1610.04900v2)

Published 16 Oct 2016 in cs.LG

Abstract: We analyze online and mini-batch k-means variants. Both scale up the widely used Lloyd 's algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that they have global convergence towards local optima at $O(\frac{1}{t})$ rate under general conditions. In addition, we show if the dataset is clusterable, with suitable initialization, mini-batch k-means converges to an optimal k-means solution with $O(\frac{1}{t})$ convergence rate with high probability. The k-means objective is non-convex and non-differentiable: we exploit ideas from non-convex gradient-based optimization by providing a novel characterization of the trajectory of k-means algorithm on its solution space, and circumvent its non-differentiability via geometric insights about k-means update.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.